
Annals of the University of Petroșani, Electrical Engineering, 25 (2023)

TOKEN-BASED AUTHENTICATION: NAVIGATING

ACCESS SCENARIOS FOR SECURE USER VERIFICATION

MATEI-VASILE CĂPÎLNAȘ1, TRAIAN SIMEDRU2

Abstract: The concepts of digitization and automation are becoming increasingly

common nowadays. The development of web applications or the migration of different

softwares to the web make the appearance of security breaches more and more frequent. This

paper aims to provide a solution to secure the authentication process in order to reduce the risks

of cyber-attacks.

Key words: web, cyberattacks, cybersecurity.

1. INTRODUCTION

The number of web applications is constantly growing. Although there is no

exact statistic of the number of web applications, at the beginning of 2022 there were

approximately 351.5 million domain names purchased. We can thus say that this is also

the approximate number of web applications, regardless of their type (static or

dynamic). This study's emphasis on web applications is driven by the rising prevalence

of vulnerabilities and attacks within this domain, coupled with the limited number of

research studies that provide visual insights into this issue. Fig.1 illustrates the

evolving trends in the Open Web Application Security Project (OWASP) top ten

vulnerabilities from 2017 to 2021.

Fig.1. OWASP top ten vulnerabilities

1Ph.D. Student, Assist. Prof. Eng., University of Alba Iulia, capilnas.matei@uab.ro
2Student, University of Alba Iulia, simedru.traian.infoen21@uab.ro

175

MATEI-VASILE CĂPÎLNAȘ, TRAIAN SIMEDRU

AN RADA, ILIE UTU

Security vulnerabilities often creep into software during its creation. To catch

and fix these issues within the software development cycle, organizations adopt various

methods like security audits and static analysis. A wide array of commercial tools and

numerous research endeavors are focused on aiding the discovery of these security

flaws. Responsibility for application security commonly resides with a specialized

team within organizations, known as the 'Software Security Group' or SSG [1]. This

team consists of application security experts charged with performing both static and

dynamic analyses to pinpoint security vulnerabilities lurking in application source

code.

2. METHODOLOGY DESCRIPTION

TypeScript Remote Procedure Call (RPC) is a concept and approach that

involves using TypeScript, a statically-typed superset of JavaScript, to facilitate

communication between different parts of a software system or between different

systems [2]. RPC is a mechanism that allows one piece of code to invoke functions or

methods on a remote server or module as if they were local, abstracting away the

complexities of network communication and data serialization [3].

Here's how TypeScript RPC typically works:

 Defining Remote Services: You define a set of services, along with their

methods, that you want to expose for remote access. These services are

typically written in TypeScript and represent the business logic or functionality

you want to access remotely.

 Generating TypeScript Interfaces: You create TypeScript interfaces that define

the structure of these remote services. These interfaces serve as a contract

between the client and the server for the available methods and their

parameters.

 Client-Server Communication: TypeScript RPC frameworks or libraries handle

the communication between the client and server. When a client wants to

invoke a method on a remote service, the framework takes care of serializing

the data, sending it over a network (e.g., HTTP, WebSocket, or other transport

protocols), and deserializing the response on the server side.

 Type Safety: One of the key advantages of using TypeScript for RPC is that it

provides type safety. TypeScript checks the types of function parameters and

return values, which can help catch errors at compile-time rather than runtime.

 Code Generation: Some TypeScript RPC frameworks or tools may also

provide code generation capabilities. They can generate TypeScript code for

client-side and server-side components, which ensures that the client and

server both understand the service contracts.

Node.js is an open-source, cross-platform JavaScript runtime environment that

allows you to execute JavaScript code on the server-side. It is built on the V8

JavaScript engine developed by Google for use in their Chrome web browser. Node.js

extends the capabilities of JavaScript beyond just being a client-side scripting

176

TOKEN-BASED AUTHENTICATION: NAVIGATING ACCESS SCENARIOS FOR

SECURE USER VERIFICATION

language, enabling it to be used for server-side scripting and building network

applications [4].

Key features and characteristics of Node.js include:

 Asynchronous and Non-blocking: Node.js is designed to be non-blocking

and event-driven. This means it can handle many concurrent connections

and I/O operations without getting blocked, making it highly efficient for

building scalable and high-performance applications.

 Event Loop: Node.js uses an event-driven, single-threaded architecture,

which allows it to efficiently manage asynchronous operations through an

event loop.

 NPM (Node Package Manager): Node.js comes with a package manager

called NPM that simplifies the installation and management of third-party

libraries and modules, making it easy for developers to reuse code and

share their own libraries.

 Server-Side Applications: Node.js is often used for developing server-side

applications, such as web servers, API servers, and real-time applications

like chat applications and online games.

 JavaScript: Node.js uses JavaScript as its primary programming language,

which allows for code reuse between the client and server, making it easier

for full-stack developers.

 Large Ecosystem: There is a vast ecosystem of open-source libraries and

frameworks available through NPM, which can significantly speed up the

development process and provide solutions for various use cases.

3. THE FUNCTIONALITIES OF THE APPLICATION

The primary aim of this application was centered around developing a robust

authentication system that prioritized security. This was achieved by leveraging several

key components such as Remote Procedure Calls (RPC), Cookies, Access Tokens, and

Refresh Tokens. These elements were strategically employed to ensure a secure and

reliable authentication process within the application.

When overseeing the authorization of a login attempt, the system considered

three distinct scenarios or cases. In each of these cases, the system executed checks to

verify the legitimacy and validity of two essential components: the Access Token and

the Refresh Token.

The Access Token, which remained valid for a duration of one hour, was

scrutinized by the system to ensure its current and legitimate status. Similarly, the

Refresh Token, designed to remain valid for a span of one day, underwent examination

by the system to confirm its authenticity and appropriateness for the login attempt.This

dual verification process aimed to guarantee the security and integrity of the

authentication procedure by evaluating the validity of these tokens within specified

timeframes.

177

MATEI-VASILE CĂPÎLNAȘ, TRAIAN SIMEDRU

AN RADA, ILIE UTU

Fig.2. Registration flow

Fig.3. Login Flow

Fig.4. Logout Flow

178

TOKEN-BASED AUTHENTICATION: NAVIGATING ACCESS SCENARIOS FOR

SECURE USER VERIFICATION

Case 1

In this particular scenario where both the Access Token and the Refresh Token

are confirmed as valid, a process called deserialization takes place specifically on the

Access Token. Deserialization involves interpreting or converting the Access Token

from its encoded or encrypted form into a readable format that contains information

about the user and their access privileges.

Once the Access Token is deserialized, the user's provided credentials undergo

validation. This step involves checking whether the user-provided credentials, such as

a username and password, match the stored or expected credentials associated with the

Access Token.

If the provided credentials are validated and deemed accurate, the user is

granted access to the platform or system. Conversely, if the credentials fail to match or

are found to be invalid during this validation process, access to the platform is denied,

and the user's entry is rejected as a security measure. This method ensures that only

users with authenticated and legitimate credentials are allowed access, while

unauthorized or incorrect attempts are prevented from entering the platform.

Case 2

In this specific scenario, the Access Token has reached its expiration,

rendering it invalid for further authentication purposes. However, it's important to note

that while the Access Token has expired, the Refresh Token remains valid.

Given this situation, the system utilizes the Refresh Token as a mechanism to

renew or regenerate the Access Token. This process involves using the Refresh Token

to request a new Access Token from the authentication server without requiring the

user to re-enter their credentials (such as username and password). The Refresh Token

serves as a secure means to extend the user's authentication session without

compromising security by sharing sensitive information repeatedly.

Once the system uses the Refresh Token to acquire a new Access Token, the

authentication flow essentially mirrors the process from the previous scenario where

both tokens were initially valid. The newly generated Access Token is then subjected

to the same authentication flow: deserialization to extract user information and

validation of credentials associated with the refreshed token.

Case 3

In this scenario, the Refresh Token has reached its expiration, making it invalid

for generating new Access Tokens. However, despite the expiration of the Refresh

Token, the Access Token remains valid and usable.

When the system encounters this situation, where the Refresh Token has

expired but the Access Token is still valid, it continues the authentication flow without

encountering any errors or disruptions. This is because the Access Token, which is the

immediate credential used for authentication purposes, is still within its valid

timeframe.

179

MATEI-VASILE CĂPÎLNAȘ, TRAIAN SIMEDRU

AN RADA, ILIE UTU

In essence, the authentication process replicates the flow observed in the first

case. The system proceeds by deserializing the Access Token to extract user

information and then validates the provided user credentials against this Access Token.

4. CONCLUSIONS

The authentication process within a system is a critical aspect ensuring security

and user access. Understanding the various scenarios involving Access Tokens and

Refresh Tokens provides a comprehensive view of how authentication flows can be

managed in different situations.

Understanding these scenarios underscores the importance of a robust

authentication system that leverages tokens effectively to ensure uninterrupted access

for users while safeguarding against unauthorized entry. Implementing such practices

enhances system security, user experience, and overall reliability

REFERENCES

[1]. Parth G., Typescript microservices: build, deploy, and secure

microservices using typescript combined with node. Packt Publishing Ltd, 2018.

[2]. Thomas T.W., Tabassum M., Chu B., Lipford H., Security during

application development: an application security expert perspective. Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18).

Association for Computing Machinery, New York, USA, pp.262, 1–12, 2018.

[3]. https://auth0.com/docs/secure/tokens/access-tokens

[4]. https://www.loginradius.com/blog/engineering/guest-post/what-are-

refresh-tokens-and-when-to-use-them/

180

https://auth0.com/docs/secure/tokens/access-tokens
https://www.loginradius.com/blog/engineering/guest-post/what-are-refresh-tokens-and-when-to-use-them/
https://www.loginradius.com/blog/engineering/guest-post/what-are-refresh-tokens-and-when-to-use-them/

